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1. Introduction

The deep connections between QCD and string theory have been revived in recent years

by the AdS/CFT Correspondence [1 – 3]. The Correspondence provides an explicit descrip-

tion of a strongly coupled gauge theory in terms of a weakly coupled, holographic string

description. The original conjecture was for a highly supersymmetric conformal theory

with only adjoint fields. Technology has since been introduced that allows supersymmetry

to be broken and a running gauge coupling to be present [4 – 6], and the introduction of

quark fields [7 – 9]. Confinement [10, 11] and chiral symmetry breaking [12]–[19] have been

investigated using the string description.

Recently, the first attempts have been made to construct phenomenological holographic

models of QCD [20, 21] (see also [22]–[31]). Surprisingly simple models consisting of gauge

theory in an anti-de-Sitter space interval have turned out to provide a remarkably good

description of the meson sector of QCD. These models are in many ways naive though.

Amongst the criticisms that might be aimed at these models are:

• The use of an AdS geometry implicitly means that the background gauge configura-

tion is conformal (and essentially that of large N N = 4 super Yang Mills).

• The existence of a mass gap is imposed by hand through the inclusion of a boundary

to the space and is not the product of a running coupling.

• The fields that holographically describe the quark bilinears are included phenomeno-

logically and there is no rigorous (string theory) realization of the construction.

• The solution for the field which describes the quark mass and condensate is also

included by hand and the quark condensate is not dynamically determined in terms

of either the gauge configuration or the quark mass.
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• The ultra-violet of the theory does not become asymptotically free.

• The excited meson mass spectrum typically scales like the excitation number n as

opposed to the
√

n scaling predicted by a simple flux tube model [32].

In spite of these objections, the models do provide a good description of the light meson

sector of QCD. The clear next step is to try to alleviate some or all of these objections. In

this paper we will address this task (progress has already been made in [24, 31]).

Our main tool will be to use the more rigorous AdS/CFT description of chiral symme-

try breaking in [12]. Previously it has been used as a testing ground for the generic features

of chiral symmetry breaking [13], but here we will massage it to a phenomenological five

dimensional holographic description of QCD.

The geometry we will use is that on the surface of a D7 brane in a non-supersymmetric

dilaton flow deformation of the AdS/CFT Correspondence. We review its origin in more

detail in the appendix, but let us stress its benefits now

• The background gauge configuration in which the quarks live is non-supersymmetric

(although not purely that of QCD) and has a running coupling.

• The mass gap is a result of the non-supersymmetric gauge configuration and the

geometry relevant for quark physics is smooth at all radii or energy scales.

• The holographic dual of the quark bilinear is explicit in the string construction.

• The quark condensate is a prediction of the gauge configuration and is determined

as a function of the quark mass.

These points go a considerable way towards addressing the inconsistencies of the first

models. We will, however, continue to adopt the phenomenological approach with regards

treating the background as describing an N=3 rather than N→ ∞ theory. In addition, the

string theory construction can only realize a U(1) axial symmetry, and does not provide

a holographic dual of the axial vector mesons. We include by hand appropriate fields to

provide a non-abelian chiral symmetry and the axial vector states in the phenomenological

spirit of [20, 21].

One knows that the transverse parts of the vector vector and axial axial correlators

in QCD interact differently with the chiral condensate in QCD. In the gravity dual one

would expect the axial and vector gauge fields to in fact see distinct metrics. We can

not incorporate this effect because the string model does not provide enough information.

Nevertheless the model links the quark condensate to the dynamics and smooths the infra-

red which should improve the description, at least in the vector sector, whilst doing no

more harm in the axial sector than is done in [20, 21].

In this paper we compute with our phenomenological model the masses and decay

constants for the pion and the rho and a1 vector mesons, and also the gρππ coupling. We

find that the model gives comparable predictions to the pure AdS models within 12% of the

QCD values. We believe these results provide support for the robustness of the predictions

of these holographic models.
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The geometry we propose returns to pure AdS space in the ultra-violet, so we do

not address here the absence of asymptotic freedom in the gravity description. As we

pointed out recently in [33], the gravity theory should only be used up to a UV cut off,

corresponding to the scale at which QCD switches from perturbative to non-perturbative

behaviour. Above that cut off the gravitational dynamics must become non-perturbative

with its loop corrections completely dominating the classical results. The correct UV

dynamics should be encoded at that cut off by correcting the values of higher dimension

operator couplings. In principle, these can be tuned in the AdS/CFT approach to produce

the holographic equivalent of a perfect lattice action.

As a small example of these ideas we consider the matching of the five dimensional

gauge coupling in the UV. In [20, 21] this coupling is matched to the perturbative result

for the vector vector correlator in QCD. The AdS gravitational dual presumably describes

a strongly coupled conformal theory in the UV and so the correlator behaviour matches

the logarithmic result of the conformal but weakly coupled UV behaviour of QCD. It is

surprising that the numerical coefficient of the log term can be matched though. Here we

test how good that matching is by allowing the parameter to float and fitting it to data.

We find such a fit induces roughly a 30% change in the coupling value, which provides a

measure of non-perturbative corrections at the scale of matching to the strongly coupled

regime of QCD. We leave attempts to further improve the UV of the theory for later work

though.

Finally, it has recently been pointed out [31] that an appropriate change to the IR

behaviour of the dilaton can correct the n scaling of the tower of excited ρ meson states.

We have tested our model in this respect but find only a marginal improvement over the

pure AdS case. This is a sign that, although our geometry describes a non-supersymmetric

gauge configuration, it is still not a perfect description of QCD and work remains to be

done on improving the geometric background.

2. Phenomenological five dimensional models

The phenomenological approaches to describing QCD holographically are based on a 5d

action of the form

S ∼
∫

d4x dr eφ√−g

(

Lσ + σ2Tr|DU |2 − 1

4g2
5

Tr(F 2
L + F 2

R)

)

(2.1)

where DµU = ∂µU − iALµU + iUARµ. The field U(x, r) = exp(iπa(x, r)T a) describes the

pions produced by the breaking of a U(Nf ) chiral symmetry with generators T a. We assume

that the background value of U is the identity so we are studying Nf degenerate quarks.

The non-abelian gauge fields AL and AR couple by left and right action on U . They will

holographically describe the vector and axial vector mesons. The field σ is a function of r

only and holographically describes the quark mass and 〈q̄q〉 expectation value. A non-zero

value for this field will break the U(Nf )L ×U(Nf )R chiral symmetry of the action down to

the vector U(Nf )V .
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2.1 Pure AdS

In the simplest approaches [20, 21], the dilaton, φ, is taken to be constant, so drops from

the action. The background metric is AdS down to some boundary at r0 which breaks the

conformal symmetry and provides the theory with a mass gap.

ds2 =
r2

R2
dx2 +

R2

r2
dr2, r0 ≤ r < ∞. (2.2)

Note that dilatation transformations in the field theory, which define the mass dimension

of operators (for example if we scale x → eαx then a scalar field of dimension one scales as

φ → e−αφ), are mapped to a symmetry of the metric with the radial direction scaling as

an energy scale.

The Lagrangian for σ in these models is given by

Lσ = (∂rσ)2 − 3σ2, (2.3)

with resulting solutions σ(r) = m/r + c/r3. Here σ has does not transform under the field

theory dilatations so m has dimension one and c dimension three. The two parameters

m, c are fitted phenomenologically to the (degenerate) light quarks’ mass and condensate.

The remaining parameter is g5, which in string theory duals is a prediction in terms of

the gauge theory ’tHooft coupling g2
YMN . In the phenomenological approach though, this

relation is abandoned and the value of g5 is fitted to the vector current correlator extracted

from QCD.
∫

d4xeiqx〈Ja
µ(x)Jb

ν(0)〉 = δab(qµqν − qgµν)ΠV (−q2), (2.4)

where Ja
µ(x) = q̄γµT aq. For QCD, the leading order contribution to ΠV (−q2) is [34]

ΠV (−q2) = − N

24π2
ln(−q2). (2.5)

In order to calculate this quantity from the five dimensional model, we appeal to the

AdS/CFT correspondence. The five dimensional vector field V a
µ (x, r) = (Aa

Lµ(x, r) +

Aa
Rµ(x, r)) acts as a source for the four dimensional vector current Ja

µ(x) in the limit

r → ∞. It obeys the equation of motion

∂µ

(

1

g2
5

eφ√−ggµαgνβ(∂αV a
β − ∂βV a

α )

)

= 0. (2.6)

We look for solutions of the form V µ(x, r) = V µ
0 (x)v(x, r), with limr→∞ v(x, r) = 1, so that

V µ
0 (x) will act as a dimension one source for Ja

µ(x). Solving the equation of motion (2.6)

in the V r(x, r) = 0 gauge gives

v(q, r) = −π

2
Y1(q/r) ∼ 1 − q2

4r2
ln

(−q2

r2

)

, as r → ∞, (2.7)

where Y1 is a Bessel function of the second kind. Substituting the solution back into the

action and differentiating twice with respect to the source V µ
0 gives the vector current

correlator

ΠV (−q2) =

[

1

g2
5q

2
r3∂rv(q, r)

]

r=∞

, (2.8)
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which (up to contact terms) yields

ΠV (−q2) = − 1

2g2
5

ln(−q2). (2.9)

Finally, comparing this to the perturbative QCD result (2.5) determines the 5d coupling

as

g2
5 =

12π2

N
. (2.10)

In [21, 20] this model is used to calculate meson masses, decay constants and couplings

coefficients with great success. We summarize these results in table 1.

The matching in (2.10) is of course naive. One should match the gravitational theory

to QCD only at the point where the QCD coupling becomes non-perturbative where gluonic

corrections to the perturbative QCD result become important. It is therefore interesting to

recompute the results of [21], but with g5 being a free parameter of the model in order to

see how accurate this matching is. On performing a global fit on all of the parameters, we

found that the optimal value for g5 is 5.19 which is 17% smaller than the result
√

(12π2)/N

from matching to perturbative QCD. We conclude that non-perturbative effects could have

a significant effect.

2.2 The new model

Our approach in this paper will be based around the D3/D7 brane string theory construc-

tion described in the appendix [12]. Here we will present the model as a 5d model in the

spirit of (2.1). Starting with the string theory model’s action (A.10), we construct a phe-

nomenological model by artificially extending the symmetry group from U(Nf )V × U(1)A
to the chiral U(Nf )L × U(Nf )R and add in the axial vector gauge field in (2.1).

The model has the metric

ds2 = H−1/2f−δ/4
3

∑

i=0

dx2
i + H1/2f1/2−δ/4h dr2, (2.11)

where

f =
(σ(r)2 + r2)2 + b4

(σ(r)2 + r2)2 − b4
, h =

(σ(r)2 + r2)2 − b4

(σ(r)2 + r2)2
, H = f δ − 1,

and a radially changing dilaton and 5d gauge coupling

eφ = H5/4f5/4−5δ/8+∆/2h5/2r3(1 + σ̇2)−1/2 ∼ r−2, as r → ∞,

g2
5 = ĝ2

5H
1/2f1/2−δ/4+∆/2h(1 + σ̇2)−1 ∼ ĝ2

5r
−2, as r → ∞. (2.12)

with δ = 1/2, ∆ =
√

39/2. Note that we scaled all coordinates by a factor of R. The

conformal symmetry breaking scale is fixed by the parameter b which will determine the

scale ΛQCD. Since it is the only scale in the model we set it to one for computations. At

the string theory level the value of R fixes the 5d gauge coupling, but here we will fix that

phenomenologically to describe an Nc = 3 theory so we have also set R = 1 and left ĝ5

free. As r → ∞, the metric returns to AdS5, the factor eφ/g2
5 goes to 1/ĝ2

5 and we are left

– 5 –
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with exactly the pure AdS model. The radial dependence of the dilaton shows the model

has a running coupling1

Dynamical quark condensate. The chiral symmetry breaking quark condensate is

determined dynamically in this model by the background metric which represents the

background gauge configuration. The Lagrangian for the field σ(r) in this model is

Lσ =
√−gf∆/2g3/2

rr

√

1 + σ̇2, (2.13)

where the dot indicates differentiation with respect to r. The equation of motion for this

field, which is complicated since σ occurs throughout the geometry, is given by

d

dr

[

f∆/2G(r, σ)
√

1 + (∂rσ)2
(∂rσ)

]

−
√

1 + ∂rσ2
d

dσ̄

[

f∆/2G(r, σ)
]

= 0, (2.14)

where

G(r, σ) = r3 ((r2 + σ2)2 + 1)((r2 + σ2)2 − 1)

(r2 + σ2)4
. (2.15)

The large r form of the solutions is of the AdS form (note from the metric that σ

here enters symmetrically with r and therefore is rescaled relative to (3) and has energy

dimension one)

σ(r) = m + c/r2 + . . . (2.16)

where m and c are interpreted as the the quark mass and condensate respectively. We seek

regular solutions that satisfy σ̇(0) = 0. There is a single such solution for each value of

σ(0) indicating that the condensate c is determined for a fixed asymptotic value of m. The

solutions are shown in figure 1.

Note that when the dynamical function σ(r) is included in the metric for the model

there is no singularity since one cannot reach r + σ = b. The model therefore extends

smoothly down to r = 0. We do not need to impose a hard IR cut off and the conformal

symmetry breaking is expressed through the parameter b only.

Matching the 5d coupling. The matching occurs at the boundary r → ∞, so the

results are exactly the same as those for the pure AdS calculation, and we are lead to the

identification ĝ2
5 = (12π2)/N .

Vector mesons. We look for solutions to the vector equation of motion (2.6) that are

of the form V a
µ (x, r) = V a

µ (r) exp(iqx). In the V a
r (x, r) = 0 gauge this gives the following

equation of motion

∂r(K1(r)∂rV
a
µ (r)) + q2K2(r)V

a
µ (r) = 0, (2.17)

with

K1 = f1/2hr3(1 + σ̇2)−1/2,K2 = Hf1−δ/2h2r3(1 + σ̇2)−1/2.

1Formally in the string theory model of the appendix the running coupling may be determined by placing

a D3 brane probe in the geometry as in [36] which gives g2

YM ∼ (w4 + b4)/(w4
− b4)∆. Note this running in

the strong coupling regime is not logarithmic and the gauge coupling diverges at the scale b.
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Figure 1: A plot of the embedding of the D7 brane as a function of the radial coordinate r

We will interpret the rho mesons as normalisable modes of this equation, with the eigen-

values corresponding to the squared rho masses m2
ρ = −q2. For these modes to be normal-

isable, we require that they vanish sufficiently rapidly as r → ∞. We must also impose the

gauge invariant boundary condition ψ′
ρ(0) = 0 to ensure the smoothness of the solution.

The rho wavefunction ψρ(r) is then a solution to (2.17) for an arbitrary component of

V a
µ (r) subject to the boundary conditions limr→∞ ψρ(r) = 0 and ψ′

ρ(0) = 0. We solve the

equation numerically to find the spectrum of rho masses.

For large N , one can write the vector current correlator as the sum over rho resonances

ΠV (−q2) = −
∑

ρ

F 2
ρ

(q2 − m2
ρ)m

2
ρ

, (2.18)

where Fρ is the rho decay constant defined by 〈0|Ja
µ |ρb〉 = Fρ δabεµ. In order to find Fρ,

we proceed by finding the Green’s function solution to (2.17). Imposing the completeness

relation
∑

ρ

K2(r)ψρ(r)ψρ(r
′) = δ(r − r′) (2.19)

on the set of eigenfunctions one finds

G(q; r, r′) =
∑

ρ

ψρ(r)ψρ(r
′)

q2 − m2
ρ

. (2.20)

Generalising (2.8) we have

ΠV (−q2) =

[

1

ĝ2
5q

2
K1(r)∂rv(q, r)

]

r=∞

. (2.21)

It can be shown that, in terms of the Green’s function, v(q, r′) = [K1(r)∂rG(q; r, r′)]r=∞.

From this, one finds

ΠV (−q2) = − 1

ĝ2
5

lim
r→∞

∑

ρ

(K1(r)ψ
′
ρ(r))

2

(q2 − m2
ρ)m

2
ρ

. (2.22)
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Comparing this to (2.18) we can extract the rho decay constant

F 2
ρ =

1

ĝ2
5

lim
r→∞

(

K1(r)ψ
′
ρ(r)

)2
. (2.23)

The axial vector mesons. We write the axial vector field, Aa
µ = (Aa

Lµ − Aa
Rµ), in

the Aar(x, r) = 0 gauge, as perpendicular components plus a longitudinal component

Aµ
a = Aµ

a⊥ + ∂µφ. The equation of motion for the perpendicular components Aa
µ⊥ with

Ai⊥(x, r) = A(q, r) exp(iqx) is

∂r(K1(r)∂rA
a
µ(r)) + q2K2(r)A

a
µ(r) − ĝ2

5σ(r)2K3(r)A
a
µ(r) = 0, (2.24)

where K1(r) and K2(r) are the same as in (2.17), and K3(r) = Hf3/2−δ/2+∆/2h3r3(1 +

σ̇2)−1/2. The solutions represent the a1 spin 1 axial vector meson if we let limr→∞ ψa1
(r) =

0, ∂rψa1
(0) = 0. We find the masses m2

a1
= −q2 by numerically finding the eigenvalues of

this equation. The decay constant Fa1
is found in the same way as (2.23).

The pion decay constant is similarly given by

f2
π =

1

ĝ2
5

[K1(r)∂rψa1
(0, r)]r=∞ . (2.25)

We can then extract the quark mass using the Gell-Mann-Oakes-Renner relation which

must be obeyed for small quark masses (ignoring the mq dependence of the condensate)

m2
πf2

π = 2mqc (2.26)

Results from these methods are displayed in table 1 and discussed in section 3.

The pion. The pion and longitudinal axial gauge fields mix and one must look for a

solution of the coupled field equations

∂r(K1(r)∂rφ) + ĝ2
5σ(r)2K3(r)(π

a − φa) = 0 (2.27)

−q2K1(r)∂rφ + ĝ2
5K4(r)σ(r)2∂rπ = 0 (2.28)

where K4(r) = f1+∆/2h2r3(1 + σ̇2)−1/2.

The regular solutions of these equations require one to fix two unknowns, the mass

of the pion, −q2, and the ratio of the φ and π fields at r = 0. This is numerically hard.

Instead one can use the values of mπ taken from the Gell-Mann-Oakes-Renner relation and

then find the ratio φ(0)/π(0) with φ′(0) = 0 which leads to φ(r = ∞) = π(r = ∞) = 0.

The coupling gρππ. To the order we are working the value of the gρππ coupling can be

read off from the expansion of |DU |2 in the action. This is not entirely satisfactory since

TrF 3 terms, which we don’t include in the action, will also contribute. Nevertheless for

comparison to [20] we will compute them for our best fit models below. In particular

gρππ =

∫

drĝ5ψρ(r)

(

K1(r)(∂rφ)2

ĝ2
5

+ σ(r)2K3(r)(π
a − φa)

)

(2.29)

The π field is normalized so the expression in brackets in this last equation integrates

to one.
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Observable Measured Model A AdS A Model B AdS B

(MeV) (MeV) (MeV) (MeV) (MeV)

mπ 139.6 ± 0.0004 139.6∗ 139.6∗ 139.0 141

mρ 775.8 ± 0.5 775.8∗ 775.8∗ 742.7 832

ma1
1230 ± 40 1396 1363 1337 1220

fπ 92.4 ± 0.35 87.6 92.4∗ 83.9 84.0

F
1/2
ρ 345 ± 8 310.2 329 297.0 353

F
1/2
a1

433 ± 13 513.1 486 491.4 440

Table 1: Results for meson variables in the models discussed in the text. Model A is the new

model in the paper with parameters fixed to the starred measurements. AdS A is the equivalent

pure AdS model results with a hard IR cut off and the value of the condensate being fitted. Model

B is a global fit in the new model and AdS B is the equivalent fit result in pure AdS.

3. Results

The results of the model are displayed in table 1. We compute 6 QCD meson parameters

for our fits (we do not include gρππ). Our model has two free parameters (after fixing g5

phenomenologically as discussed above), b corresponding roughly to the strong coupling

scale Λ and m corresponding to the light quark mass. The model therefore has the same

number of free parameters as real QCD.

In the first model, A, we match b and m by demanding that we correctly reproduce

mπ and mρ. In order to do this, we must set Λb = 264.5 MeV and m = 2.16 MeV . This

gives a prediction of 325.8MeV for the scale of the quark condensate. The overall rms

error for this model is 12.8% (Note εrms =
∑

O((δO/O)2/n)1/2 with O the observable and

here n = 4). For comparison we also reproduce the pure AdS fit to the same parameters

found in [20]. That model has three free parameters, the value of the IR cut off, the quark

mass and the quark condensate and is therefore less predictive.

In model B, we perform a global fit to all observables. This gives Λb = 253.2(MeV )

and m = 2.24 MeV , with the characteristic scale for the quark condensate 311.9MeV .

The overall rms error for this model is 11.6%. Again we reproduce the equivalent pure

AdS model fit for comparison.

For the best fit point we have also computed gρππ = 4.81MeV using (2.29). This

should be compared to the experimental result of 6.03 ± 0.07MeV and to the results

in [20] of 4.48MeV although, as discussed above, the computation of this coupling is less

robust than the other results.

It is again interesting to test how well determined the 5d gauge coupling g5 is by the

phenomenological fit to the far UV expectation for ΠV . For example if one fits Λ, mq and

g5 to correctly reproduce the three meson masses one finds g5 = 4.36 which is 30% lower

than the value
√

12π2/Nc from perturbative QCD.
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4. Conclusions

We have adapted a string theoretic model of chiral symmetry breaking to a phenomenolog-

ical description of QCD. The model we have proposed goes some way towards addressing

the inconsistencies of simple AdS slice holographic QCD models [20, 21]. The background

geometry of our model is non-supersymmetric, and it is the smooth variation of this geom-

etry with the radial direction r that provides a mass gap, without the need for an artificial

hard IR cut-off. In addition, the dual field to the quark mass/condensate operator is a

natural part of the geometrical set-up with the value of the condensate being determined

by the quark mass.

However, this is still a phenomenological approach in that we introduce extra fields

and symmetries by hand into the model in order to describe the full pion and axial vector

sectors. Formally there is no geometric string interpretation for this system. We also treat

the background as though it describes an N = 3 rather than an N = ∞ field theory by

matching the 5d gauge coupling to QCD.

We find that the predictions of this model match experimental results to within 12%.

This model is a little more predictive than the pure AdS slice models since the condensate

is dynamically determined by the geometry. The best fit is in fact a few percent worse

than the AdS slice models but hopefully the theoretical improvements represent at least a

moral victory. In any case one would naively have expected errors of order a few 100% in

all of these models so the closeness to QCD across a range of holographic models supports

the robustness of the approach.

A drawback of these models to date has been that the geometry returns to AdS for

large r, meaning that the field theory is not asymptotically free in the UV. Incorrect physics

in the UV will affect the strong coupling regime in the IR [33]. Here we investigated

corrections to the matching of the 5d gauge coupling to naive perturbative QCD results.

We found that this coupling’s value should be changed at the 30% level indicating the size

of non-perturbative effects. In the future one might hope to study the importance of higher

dimension operators in the IR physics as well.
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A. String theory progenitor

The phenomenological model used here is based on the AdS/CFT Correspondence realiza-

tion of chiral symmetry breaking in [13]. That model consists of a dilaton flow deformed

AdS geometry

ds2 = H−1/2

(

w4 + b4

w4 − b4

)δ/4

dx2
4 + H1/2

(

w4 + b4

w4 − b4

)(2−δ)/4
w4 − b4

w4

6
∑

i=1

dw2
i , (A.1)
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Figure 2: The basic geometry of the D3 D7 system under consideration.

where

H =

(

w4 + b4

w4 − b4

)δ

− 1 (A.2)

and the dilaton and four-form are given by

e2φ = e2φ0

(

w4 + b4

w4 − b4

)∆

, C(4) = −1

4
H−1dt ∧ dx ∧ dy ∧ dz. (A.3)

There are formally two free parameters, R and b, since

δ =
R4

2b4
, ∆2 = 10 − δ2 (A.4)

We can see that dimensionally b has energy dimension one and enters to the fourth

power. The SO(6) symmetry of the geometry is retained at all r. We conclude that in

the field theory a dimension four operator with no SO(6) charge has been switched on. b4

therefore corresponds to a vev for the operator TrF 2.

Quarks are introduced by including probe D7 branes into the geometry. As shown

in figure 1, strings which stretch between the D3 and D7 branes are in the fundamental

representation of the SU(N) gauge theory on the D3. The length of the minimum length

string between the two branes determines the mass of the quark field. We minimize the

D7’s world-volume in the spacetime around the D3 branes. This is encoded by the Dirac

Born Infeld action in Einstein frame of the D7 brane

SD7 = −τ7

∫

d8ξ eφ [− det(P[gab])]
1

2 , (A.5)

where the pull back of the metric P[gab] is given by

P[gab] = gMN
dxM

dξa

dxN

dξb
(A.6)

Substituting from the geometry above we can find the equation of motion for the radial

separation, σ, of the two branes in the 8, 9 directions as a function of the radial coordinate

r in the 4 − 7 directions. It is just eq. (2.14) with the solutions shown in figure 1. The
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solutions show that a dynamical mass is formed for the quarks. A massless quark would

correspond to a D7 brane that intersects the D3 brane so there was a zero length string

between them. We see that the D3s repel the D7 and for all configurations there is a

minimum length string. The solution which asymptotically has m = 0 also explicitly

break the U(1) symmetry in the 8, 9 plane by bending off the axis. This is the geometric

representation of the breaking of the U(1) axial symmetry of the quarks.

Fluctuations of the brane about the solution found above in the 8, 9 directions corre-

spond to excitations of the operator q̄q and contain information about the pion and sigma

field of the model. Letting u8 + iu9 = σ(r)U(r, ξ) and expanding to second order in U(r, ξ)

gives

S = −τ7

∫

d8ξ eφ√−g(1 + σ̇2)
1

2

[

1 +
1

2
grrσ

2(1 + σ̇2)−1∂aU∂aU
†

]

. (A.7)

Letting U(r, ξ) = exp(iπ(r, ξ), this gives an action for the pion field and the σ field.

There is also a superpartner U(1) gauge field in the action which describes the operator

q̄γµq and hence vector mesons. This is introduced as a gauge field Fab living on the D7

S = −τ7

∫

d8ξ eφ
[

− det(P[gab] + 2πα′e−φ/2Fab)
]

1

2

, (A.8)

which, expanded to second order gives

S = −τ7

∫

d8ξ eφ√−g(1 + σ̇2)
1

2

[

1 +
1

2
grr

σ2

(1 + σ̇2)
∂aU∂aU

† − 1

4

(2πα′2)

(1 + σ̇2)
e−φF 2

]

. (A.9)

Now, if we assume that the fields do not have any components on the three sphere (which

is appropriate for duals to non-sypersymmetric fields) we arrive at the 5d action

S = −R−8

∫

d4x dr eφ√−g

(

Lσ + σ2|∂U |2 − 1

4g2
5

F 2)

)

(A.10)

Between (A9) and (A10) we have rescaled U → R4π
√

τ7U and redefined the metric, dilaton

and g5 to the appropriate notation for a 5d model. In particular g5 and the dilaton now

have additional r dependence which is just that found in (12). The asymptotic large r value

of g5 is given by 16π3gsα
′2/r2. Normalizable solutions of the fields in this model in the fifth

direction correspond to physical states in the gauge theory, with the quantum numbers of

the operators described by the holographic field. Integrating over r then leaves the four

dimensional effective Lagrangian for these states from which masses and couplings can be

read off. A more complete analysis of this model can be found in [12, 13, 35]. This method

can be extended to give a theory with an U(Nf )V ×U(1)A symmetry by replacing the single

D7 brane with a stack of Nf D7 branes (at large r the theory becomes supersymmetric

and there is a superpotential term linking the adjoint matter fields and the quarks which

breaks the U(Nf )A symmetry). We must, however, be careful to keep Nf ¿ N so that

we can still treat the stack of D7 branes as a probe, and ignore any back reaction on the

geometry.

– 12 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
8

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[4] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on

perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022

[hep-th/9810126].

[5] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super

Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047].

[6] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of D3-branes

and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194].

[7] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236].

[8] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on

systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057].

[9] M. Grana and J. Polchinski, Gauge / gravity duals with holomorphic dilaton, Phys. Rev. D 65

(2002) 126005 [hep-th/0106014].

[10] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002].

[11] S.J. Rey and J.T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001].

[12] J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking

and pions in non-supersymmetric gauge / gravity duals, Phys. Rev. D 69 (2004) 066007

[hep-th/0306018].

[13] N.J. Evans and J.P. Shock, Chiral dynamics from AdS space, Phys. Rev. D 70 (2004) 046002

[hep-th/0403279].

[14] N. Evans, J. Shock and T. Waterson, D7 brane embeddings and chiral symmetry breaking,

JHEP 03 (2005) 005 [hep-th/0502091].

[15] K. Ghoroku and M. Yahiro, Chiral symmetry breaking driven by dilaton, Phys. Lett. B 604

(2004) 235 [hep-th/0408040].

[16] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of

large-Nc QCD, JHEP 05 (2004) 041 [hep-th/0311270].

[17] D. Bak and H.-U. Yee, Separation of spontaneous chiral symmetry breaking and confinement

via AdS/CFT correspondence, Phys. Rev. D 71 (2005) 046003 [hep-th/0412170].

[18] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys. 113 (2005) 843 [hep-th/0412141].

[19] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114

(2006) 1083 [hep-th/0507073].

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://jhep.sissa.it/stdsearch?paper=12%281998%29022
http://arxiv.org/abs/hep-th/9810126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C451
http://arxiv.org/abs/hep-th/9909047
http://jhep.sissa.it/stdsearch?paper=07%282000%29038
http://arxiv.org/abs/hep-th/9906194
http://jhep.sissa.it/stdsearch?paper=06%282002%29043
http://arxiv.org/abs/hep-th/0205236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB621%2C157
http://arxiv.org/abs/hep-th/0107057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://arxiv.org/abs/hep-th/0106014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4859
http://arxiv.org/abs/hep-th/9803002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC22%2C379
http://arxiv.org/abs/hep-th/9803001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C066007
http://arxiv.org/abs/hep-th/0306018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C046002
http://arxiv.org/abs/hep-th/0403279
http://jhep.sissa.it/stdsearch?paper=03%282005%29005
http://arxiv.org/abs/hep-th/0502091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB604%2C235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB604%2C235
http://arxiv.org/abs/hep-th/0408040
http://jhep.sissa.it/stdsearch?paper=05%282004%29041
http://arxiv.org/abs/hep-th/0311270
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C046003
http://arxiv.org/abs/hep-th/0412170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://arxiv.org/abs/hep-th/0507073


J
H
E
P
0
1
(
2
0
0
7
)
0
5
8

[20] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128].

[21] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl.

Phys. B 721 (2005) 79 [hep-ph/0501218].

[22] K. Ghoroku and M. Yahiro, Holographic model for mesons at finite temperature, Phys. Rev.

D 73 (2006) 125010 [hep-ph/0512289].

[23] T. Hambye, B. Hassanain, J. March-Russell and M. Schvellinger, On the ∆I = 1/2 rule in

holographic QCD, Phys. Rev. D 74 (2006) 026003 [hep-ph/0512089].

[24] K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, Holographic model for hadrons in

deformed AdS5 background, Phys. Lett. B 633 (2006) 602 [hep-ph/0510334].

[25] L. Da Rold and A. Pomarol, The scalar and pseudoscalar sector in a five-dimensional

approach to chiral symmetry breaking, JHEP 01 (2006) 157 [hep-ph/0510268].

[26] G.F. de Teramond and S.J. Brodsky, The hadronic spectrum of a holographic dual of QCD,

Phys. Rev. Lett. 94 (2005) 201601 [hep-th/0501022].

[27] J. Hirn and V. Sanz, Interpolating between low and high energy QCD via a 5D Yang-Mills

model, JHEP 12 (2005) 030 [hep-ph/0507049].

[28] J. Hirn, N. Rius and V. Sanz, Geometric approach to condensates in holographic QCD, Phys.

Rev. D 73 (2006) 085005 [hep-ph/0512240].

[29] D.K. Hong and H.-U. Yee, Holographic estimate of oblique corrections for technicolor, Phys.

Rev. D 74 (2006) 015011 [hep-ph/0602177].

[30] J.P. Shock and F. Wu, Three flavour QCD from the holographic principle, JHEP 08 (2006)

023 [hep-ph/0603142].

[31] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys.

Rev. D 74 (2006) 015005 [hep-ph/0602229].

[32] M. Shifman, Highly excited hadrons in QCD and beyond, hep-ph/0507246.

[33] N. Evans, J.P. Shock and T. Waterson, Towards a perfect QCD gravity dual, Phys. Lett. B

622 (2005) 165 [hep-th/0505250].

[34] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules,

Nucl. Phys. B 147 (1979) 385.

[35] R. Apreda, J. Erdmenger and N. Evans, Scalar effective potential for D7 brane probes which

break chiral symmetry, JHEP 05 (2006) 011 [hep-th/0509219].

[36] A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an

N = 2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076].

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C261602
http://arxiv.org/abs/hep-ph/0501128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://arxiv.org/abs/hep-ph/0501218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C125010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C125010
http://arxiv.org/abs/hep-ph/0512289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026003
http://arxiv.org/abs/hep-ph/0512089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB633%2C602
http://arxiv.org/abs/hep-ph/0510334
http://jhep.sissa.it/stdsearch?paper=01%282006%29157
http://arxiv.org/abs/hep-ph/0510268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C201601
http://arxiv.org/abs/hep-th/0501022
http://jhep.sissa.it/stdsearch?paper=12%282005%29030
http://arxiv.org/abs/hep-ph/0507049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C085005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C085005
http://arxiv.org/abs/hep-ph/0512240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C015011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C015011
http://arxiv.org/abs/hep-ph/0602177
http://jhep.sissa.it/stdsearch?paper=08%282006%29023
http://jhep.sissa.it/stdsearch?paper=08%282006%29023
http://arxiv.org/abs/hep-ph/0603142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C015005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C015005
http://arxiv.org/abs/hep-ph/0602229
http://arxiv.org/abs/hep-ph/0507246
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB622%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB622%2C165
http://arxiv.org/abs/hep-th/0505250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB147%2C385
http://jhep.sissa.it/stdsearch?paper=05%282006%29011
http://arxiv.org/abs/hep-th/0509219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C044009
http://arxiv.org/abs/hep-th/0008076

